价格¥99.00元 /份
销量浏览人数1191
地区暂无
交付方式站内下载
友情提醒:为保障您的利益,请网上成交,贵重物品,请将付款托管到平台进行交易。
免责声明:本网所展示的论文与服务信息由买卖双方自行提供,其真实性、准确性和合法性由信息发布人负责。本网不提供任何保证,并不承担法律责任。
计算方法课程设计 用Euler公式,改进的Euler公式,Runge-Kutta法求解微分方程,共21页,4059字
摘 要
《计算方法》是一门理论与实际紧密相连的学科,计算方法是计算数学、科学工程计算诸多数值方法的理论基础和方法的依据。为了进行科学计算我们应掌握计算方法的基本理论和方法,并为将来能够独立地提出新理论与方法提供必要的前提。本次课程设计主要简述了计算方法的一些基本理论和方法,主要用Euler公式,改进的Euler公式,Runge-Kutta法求解微分方程。
通过对计算方法的学习,我们对理论知识有了一定了解,现在我们根据要求以“Euler公式,改进的Euler公式,Runge-Kutta法求解微分方程”为题目进行课程设计,本次课程设计我们主要是对运用三种方法对微分方程进行求解,并对其进行比较,观察的得出比较正确的结论:Runge-Kutta法求解微分方程比Euler公式,改进的Euler公式的求解结果有更高的精度。其结果是用C语言进行编程得出来的,并且在VC++6.0的环境下进行调试下运行通过的。
通过本次设计实验,不仅对其三种方法有了更一步的了解,而且掌握并了解了几种计算机辅助工具的运用,对我们以后更好的学习它们奠定了一定的实践基础,提高了我们一定的分析问题和解决问题的能力,也让我们对所学知识有了更深刻的了解,同时也提高了我们的动手能力。
目 录
摘 要 - 6 -
用Euler公式,改进的Euler公式,Runge-Kutta法求解微分方 - 7 -
一、理论说明 - 7 -
1.1 向前欧拉公式 - 7 -
1.2向后欧拉公式 - 8 -
1.3改进的欧拉公式 - 9 -
1.4龙格库塔公式 - 10 -
二、问题的描述 - 13 -
三、问题的分析 - 13 -
3.1欧拉方法 - 14 -
3.2改进的欧拉公式 - 15 -
3.3.龙格库塔法 - 17 -
龙格库塔法的算法设计 - 17 -
四、结论 - 19 -
论文大小:832.50KB
论文格式:word
论文专业:计算方法
论文编号:14406
论文文件预览:
共1文件夹,1个文件,文件总大小:832.50KB,打包后大小:262.56KB